

## **OSS-MOBILE**

# и проблемы поддержки эксплуатации сетей мобильной связи

Михаил ФЕНОМЕНОВ, технический координатор НТЦ Аргус Игорь САДОВСКИЙ, специалист отдела развития. НТЦ Аргус

## **Немного рассуждений об OSS** оператора мобильной связи

Операторы сотовой связи всегда находились в авангарде развития телекоммуникационных технологий. Новые возможности для абонентов, новые услуги и архитектуры... Для сотовой связи характерен современный парк оборудования и постоянная работа над оптимизацией бизнес-процессов оператора. Однако даже в самой современной сети связи мы сталкиваемся с рядом проблем в области эксплуатационного управления, и мобильная связь не исключение. В нашей статье мы постараемся обозначить эти проблемы и обсудить способы их решения.

Причины основных сложностей традиционны для всей телекоммуникационной отрасли: это технологическое развитие, сопровождающееся изменением принципов ведения бизнеса и протекания эксплуатационных процессов. То есть те модели, которые были эффективны еще несколько лет назад, все чаще начинают давать сбой и тормозить дальнейшее развитие. Они были ориентированы на предоставление небольшо-

го количества автономных услуг; на сеть, в основе которой лежали принципы TDM-коммутации; на экстенсивный рост рынка за счет привлечения новых клиентов. Сейчас же происходит переориентация на предоставление большого количества персонализированных пакетированных услуг, реализацию стратегии FMC и переход на пакетные технологии.

Сети мобильных операторов зачастую строились на оборудовании небольшого количества основных вендоров, снабжавших их в рамках своих продуктовых линеек многофункциональными системами управления, которые решали задачи учета оборудования, мониторинга сети, реконфигурации в случае отказов, управления услугами и т.п.

В настоящее время в сети мобильного оператора появляется все большее количество оборудования от разных вендоров — это узлы транспортной сети разных уровней (ВОЛС, IP/MPLS), домен сервисных платформ, медиасерверы и прочее оборудование, превратившее сеть в мультивендорную. Причем все это оборудо-

вание, относящееся к разным технологическим доменам и созданное разными производителями, должно согласованно участвовать в предоставлении услуг.

Конечно, мы не сможем в рамках одной статьи последовательно разобрать все проблемы эксплуатации, которые породили новые технологии, новая архитектура сети и новые услуги. Выделим пока лишь две ключевые, на наш взгляд, проблемы.

Первая. Инвентаризация оборудования происходит в разных автономных системах, следовательно, сложно увидеть общую картину сети на нескольких технологических уровнях. Ключевой системой при управлении услугами становится биллинг, что логично с коммерческой точки зрения, но не очень эффективно с технологической: биллинг не учитывает состояние сетевых ресурсов и никак не координирует работу в случае, если для предоставления услуги требуется настройка разнотипного оборудования через разные системы управления.

Вторая. Аварии обнаруживаются сменными инженерами ЦУС

42 www.mobilecomm.ru

в фирменных системах управления, однако исходную причину неисправности сложно отследить, поскольку она может лежать вне досягаемости конкретной системы управления и мониторинга. Приходится решать это организационными мерами, то есть с помощью людей, а не технологий, что выглядит не очень эффектно на фоне услуг 3G/4G. К тому же сложно отследить влияние неисправности на качество предоставления услуг, поскольку системы управления оперируют техническими параметрами, а не характеристиками услуг.

#### Дорога начинается с первого шага

В качестве возможного решения перечисленных проблем мы видим подход, предусматривающий постепенную трансформацию инфраструктуры OSS-решений в соответствии с изменениями в бизнесе и сетевой инфраструктуре оператора.

Основой будущей комплексной OSS должна стать единая система учета ресурсов сети — Inventory. В нее можно перемещать данные из существующих систем управления, но в первую очередь в нее должны заноситься сведения о технологических доменах, где процессы эксплуатации автоматизированы сейчас слабее всего: обычно это мультитехнологичные транспортные оптические и медные сети, а также узлы и сервисные платформы ІРсетей. Также в Inventory должны попадать сведения о ресурсах фиксированной сети доступа, которая сейчас появляется у большинства мобильных операторов в процессе конвергенции сетей.

С системой учета сетевой инфраструктуры необходимо интегриро-

вать систему учета услуг и клиентов: так можно будет учесть взаимосвязь между предоставляемыми сервисами и ресурсами, их поддерживающими.

Также нужна интеграция Inventory с системой обработки неисправностей — зная взаимосвязь ресурсов, предоставляющих сервис, оператор сможет реконфигурировать сеть для быстрого восстановления работоспособности услуг. Через такую систему обработки неисправностей будет скоординирована работа подразделений в том случае, если авария является глобальной и затрагивает сразу несколько зон ответственности.

Для того чтобы информация в Inventory была всегда актуальна, нужна универсальная система взаимодействия с оборудованием, которая сможет получать информацию непосредственно с сетевых устройств либо из фирменных систем управления и таким образом актуализировать информацию в базе данных.

#### Не словом, а делом

В НТЦ Аргус создана архитектура, которая отвечает изложенному выше видению решения задач эксплуатации, стоящих перед мобильным оператором. Наше решение базируется на собственных разработках в области OSS, которые уже более десяти лет успешно применяются на сетях крупнейших российских операторов связи, в первую очередь в МРК, входящих в состав ОАО «Связьинвест», а также на сетях альтернативных IP-операторов. Решение состоит из нескольких продуктов: АРГУС-ТУ (Технический Учет), АРГУС-КТП (Комплексная Техническая Поддержка), АРГУС-АО (Абонентский Отдел) и платформы СИРИУС.

АРГУС-ТУ предназначен для автоматизации процессов учета, обработки и анализа информации по линейно-техническим объектам, сооружениям сети и услугам. Он позволяет систематизировать информацию обо всей технической инфраструктуре современного оператора связи, организовать к ней быстрый и удобный доступ. Используя мощные и эффективные инструменты, система Inventory дает возможность вести необходимую техническую документацию и выполнять все действия по инвентаризации сетей ТфОП, мобильных сетей и NGN. Причем оператор может работать как с алфавитно-цифровыми формами, так и на картографической подложке и схеме.

Интерактивная картографическая система позволяет работать с картой местности, наносить на нее объекты или отображать сетевые связи. При этом информация никогда не дублируется и, будучи введенной тем или иным способом, сразу попадает во все учетные документы и схемы, так как используемый в системе принцип однократного ввода избавляет от необходимости вводить одну и ту же информацию в разные документы — это будет сделано автоматически, как и генерация всех основных схемотехнических документов.

Все функции и инструменты системы изначально построены по универсальным принципам, благодаря чему система позволяет единообразно работать с различными технологическими доменами. Новые технологические домены, типы учитываемых объектов и их атрибуты также могут быть добавлены в сжатые сроки благодаря специальному инструменту — Конфигуратору, позволяющему



### ТЕЛЕКОММУНИКАЦИОННЫЕ ТЕХНОЛОГИИ

расширять систему без влияния на программное ядро.

Помимо детального учета разных типов оборудования и услуг связи, система предлагает такие важные функции, как учет и отображение связи услуга-ресурсы/ресурс-услуги, автоматический подбор и резервирование ресурсов под конкретную услугу (например, передача трафика GPRS от базовой станции), создание стандартных и пользовательских отчетов по любой информации, хранимой в системе.

причины проблем и видеть, какие сервисы затронуты аварией, и на основе этой информации присваивать проблеме соответствующий приоритет и временные рамки устранения.

Система АРГУС-АО позволяет работать с каталогом продуктов и услуг и инициировать процесс создания их экземпляров в сети оператора. Именно из нее поступят необходимые исходные требования в АРГУС-ТУ для осуществления подбора и резервирования ресурсов, и именно из нее АРГУС-КТП будет

компания является постоянным членом TMForum, кроме того мы много сотрудничаем с нашими коллегами за рубежом), а также на наш собственный опыт реализации OSS-проектов на сетях крупнейших в России операторов связи.

Поэтому в нашей системе уже есть готовый набор всех типовых объектов учета, отчетов и пр., однако мы понимаем, что нет одинаковых операторских компаний, и готовы вносить необходимые изменения в наш продукт, а также предоставлять нашим клиентам инструменты, позволяющие им самим расширять систему в определенных областях.

Все наши разработки имеют необходимые сертификаты и достойно прошли проверку временем как в части надежности, так и в части соответствия меняющимся требованиям телекоммуникационных операторов.

**\*** 

**НТЦ Аргус** — российский разработчик систем класса OSS, успешно работающий на рынке телекоммуникаций уже более десяти лет. Основное направление деятельности компании — разработка ПО для оптимизации эксплуатационной деятельности и автоматизации бизнес-процессов операторов связи.

В числе клиентов НТЦ Аргус — межрегиональные компании связи ОАО «Связьинвест», а также альтернативные операторы России и стран ближнего зарубежья.

Большое внимание компания уделяет подготовке и развитию молодых специалистов. Так, к 2009—2010 учебному году силами компании была открыта учебная лаборатория систем OSS в СПбГУТ им. проф. М.А. Бонч-Бруевича, благодаря которой у студентов появилась возможность изучать на практике основы построения и применения систем OSS/BSS.

С системой АРГУС-ТУ интегрирована система АРГУС-КТП, которая позволяет регистрировать проблемы с тем или иным оборудованием и запускать процессы их решения. В АРГУС-КТП факт аварии может быть зарегистрирован сменными инженерами, обнаружившими ее с помощью проприетарной системы управления оборудованием, но он также может быть зарегистрирован автоматически на основе сообщений из интегрированных систем управления и мониторинга.

Благодаря совместной работе этих систем оператор всегда будет видеть существующие на сети аварии, их статистику и пр., но главное — он сможет проводить гоот cause analysis — анализ основной

брать исходные данные о требованиях QoS-услуги (тракта передачи данных).

Все системы могут взаимодействовать с middleware-платформой СИРИУС, которая призвана решить весь комплекс задач по взаимодействию с сетевым оборудованием и ІТ-инфраструктурой оператора: от проведения дистанционных измерений до удаленного конфигурирования и управления услугами, как для классических аналоговых сетей и ТDM-технологий, так и для All-IP-оборудования последних поколений

При разработке наших решений мы используем самые современные методологии и программные продукты. В работе опираемся как на международный опыт (наша

#### Вместо заключения

Конечно, решить все проблемы, связанные с OSS, одним несложным движением не получится, и авторы статьи не предполагают, что дали исчерпывающие ответы на поставленные в статье вопросы. Более того, и сами вопросы еще не все сформулированы. Зато авторы уверены, что партнерская работа, несомненно, принесет свои плоды и взаимодействие оператора и разработчика OSS поможет достичь необходимого эффекта.

Поэтому НТЦ Аргус предлагает своим партнерам полный комплекс услуг по развертыванию OSS: от бизнес-аналитики и консалтинга до подготовки проекта, системной интеграции и технической поддержки, таким образом обеспечивая весь технологический процесс внедрения системы OSS. ■

44 www.mobilecomm.ru